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Noble element detectors have great potential to search for new physics through the
direct detection of light dark matter, reactor neutrinos, and natural (e.g. solar) neutrinos. Noble
element detectors that are sensitive to single ionization electrons via electroluminescence are
able to detect low energy O(10 eV) electronic recoils and O(100 eV) nuclear recoils, although
without nuclear and electronic recoil discrimination. Two-phase argon and xenon detectors are
well-developed for heavy WIMP searches, but their signal production mechanisms and
backgrounds below O(keV) need further investigation. Liquid neon deserves further
investigation, with its intrinsic radiopurity and favorable kinematics for recoil energy transfer from
light dark matter and low energy neutrinos. A new class of compact O(100 kg) low-threshold
(sub-keV) noble element detectors will offer complementary physics opportunities to large (100
tonne) noble liquid detectors in dark matter and neutrino physics, while being competitive with
other low-threshold detector technologies that are more difficult to scale up in target mass.

Without nuclear and electronic recoil discrimination, systematic backgrounds and
radioactivity obscure typically background-free nuclear recoil event searches. It is necessary to
select the most radiopure materials, particularly photosensors. Better liquid or gas purification
techniques (e.g. cryogenic distillation) drastically reduce beta and gamma backgrounds
stemming from 3H, 39Ar, 85Kr, and the 220,222Rn decay chains. Cosmogenic activation rates must
be further studied and considered for handling detector materials above ground. Beyond particle
interaction backgrounds, high rates of single- and few-electron signals are observed. Such
spurious electrons have defied clear explanation and appear related to charge buildup on
surfaces or in unknown chemical interactions,among other potential effects [3,5,7,12,13,34].
Dedicated R&D is needed to better understand the sources of these backgrounds and develop
mitigation techniques. Fast and efficient gas purification, liquid purification technologies, cleaner
alternative detector materials, and various electric field configurations must be explored to
optimize signal measurement efficiency and reduce backgrounds. Electroluminescence in a
single-phase noble element detector, either high-pressure gas or liquid, offers a
thermodynamically simpler possibility for single-electron detection, without the hypothesized
electron-trapping at the liquid-gas interface in two-phase LXe detectors.

Most noble element detectors searching for heavy WIMPs rely on in-situ calibrations for
electronic and nuclear recoils in order to reliably reconstruct events’ energies[25,26,27,28]. A
number of ancillary external calibration campaigns [29,30] refine the scintillation and ionization
yields of liquid argon and liquid xenon, and explore the responses of other noble elements at the
relevant low energies. In the search for low mass dark matter and solar and reactor neutrinos
with CEvNS, a substantial effort to identify electronic and nuclear recoil calibration sources is
needed to validate sensitivity below O(keV)[33]. The Migdal effect, expected in this energy
region, has yet to be conclusively observed [31]. Its key experimental confirmation will support
the use of this channel to access lower energy dark matter interactions [32].

While current dark matter and neutrino experiments have focused on pure, noble liquid
targets (e.g argon and xenon), there is a significant interest in exploring the effects of doping
liquid argon with xenon and other elements [14–24]. These dopants are typically chosen for
ease of light detection and increasing scintillation and ionization yields. At higher
concentrations, dopants can also be favorable targets in their own right. For example, hydrogen
or hydrogenous compounds doped in liquid xenon provide a light nucleus with more efficient
kinematic coupling to light dark matter, and nuclei with an odd number of nucleons can add
spin-dependent sensitivity. Further research is needed to develop the capacity for stable,
high-purity doping and to measure the effects on low-energy nuclear and electronic recoils for
dark matter and neutrino detection.
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The goal is to build low-threshold noble liquid or high pressure noble gas detectors to search for
new physics through direct detections of light dark matter, reactor neutrinos, and natural
neutrinos.

[Quantitative description of targets]
Noble element detectors that are sensitive to single ionization electrons through
electroluminescence have the capability to detect low energy O(10 eV) electronic recoils and
O(100 eV) nuclear recoils. This opens up opportunities to search for new physics through light
dark matter and low energy neutrinos from either artificial sources, e.g. reactors, or natural
sources, such as the Sun. Two-phase argon and xenon detectors are well developed for the
heavy WIMP searches, while their background and signal production below keV threshold need
further investigation. Liquid neon and helium detectors using the two lighter noble elements are
much less developed despite their intrinsic cleanliness in radiopurity and favorable kinematics in
recoil energy transfer. In addition, electroluminescence production in liquid phase or in
high-pressure noble gases offer another possibility for the single electron detection without the
complication and possible electron-trapping of the liquid-gas interface in two-phase detectors. A
new class of small yet modest (100kg to 1 tonne) low-threshold (sub-keV) noble element
detectors will offer complementary physics opportunities to large (100 tonne) noble liquid
detectors in dark matter and neutrino physics while be competitive to other low-threshold
detector technologies that are more difficult to scale up in target mass.

[Backgrounds - Main focus: Spurious electron backgrounds]
[One sentence on ERs]



Without nuclear and electronic recoil discrimination, systematic backgrounds and radioactive
impurities obscure typically background-free nuclear recoil event searches. Improvements can
be made by selecting the most radiopure materials, with particular attention paid to
photosensors. Better purification techniques, such as cryogenic distillation, drastically reduce
beta and gamma backgrounds stemming from 3H, 39Ar, 85Kr, and the 220,222Rn decay chains.
Cosmogenic activation rates must be studied and considered for building, storing, and
transporting detector materials above ground. Beyond particle interaction backgrounds, high
rates of single- and few-electron signals are strongly correlated in time and location to prior
energetic interactions. Research and development efforts toward improved purity, through either
fast and efficient gas purification or liquid purification technologies, and optimized electric fields
are still needed to mitigate this crippling detector background. Such spurious electrons have
defied clear explanation and appear related to charge buildup or a specific electronegative
impurity species [3,5,7,12,13]. Minimizing detector and radioactivity backgrounds are essential
to lowering the background near the threshold to study neutrinos and searching for dark matter.
Abby

[Lowering threshold: Main focus Low-energy calibration]
[One sentence on tuning E-field]
Most of noble element detectors operated to search for heavy WIMPs rely on in-situ calibrations
both for electronic and nuclear recoils in order to reliably reconstruct events’ energy scale while
minimizing systematic effects [25,26,27,28]. A number of ancillary external calibration
campaigns [29,30, any recent one?] allowed to refine the scintillation and ionization yields of LAr
and LXe at the relevant energies. On the contrary, in the search for low mass dark matter
uncertainties in low-energy electronic and nuclear recoil charge yields are still significant, thus
limiting the current sensitivity for particles below a few GeV/c2. A substantial effort aimed at
producing reliable ex-situ sub-keV ER and NR calibrations for noble element targets is needed.
Furthermore, by exploiting the very same measurement campaigns, it is also important to
observe the Migdal effect [31]. This key experimental confirmation will support the use of this
channel to access new swaths of the parameter space at even lower masses [32].
In the perspective of developing dedicated experiments searching for new physics at extremely
low energies, the electric field configuration of such detectors will have to be optimized for
S2-only analyses, thus requiring ex situ calibrations at variable fields.
Claudio

[Doping]
While most noble liquid detectors used in current dark matter and neutrino experiments have
focused on pure targets, largely LAr and LXe, there is a significant body of literature exploring
the effects of doping LAr with Xe [14–19], allene [20–22], tetra-methyl-germanium [23],
trimethylamene [24], and triethylamene [24]. These dopants are typically explored in the context
of wavelength shifting and increasing scintillation and ionization yields. In low-threshold
detectors, these properties may enable LAr to forego the use of other wavelength shifters, and
increasing the scintillation and ionization yield, particularly for nuclear recoils, essentially by
allowing energy that would otherwise be lost as heat to convert to visible modes. At higher
concentrations, dopants can also add targets with favorable targets. For example, H provides a



light nucleus with more efficient kinematic coupling to light dark matter, and odd-A nuclei can
add spin-dependent sensitivity. Similar ideas are being explored for doping LXe with
hydrogenous compounds. R&D is needed to develop the capacity for stable, high-purity doping
and to measure the effects on low-energy nuclear and electronic recoils.
Shawn

Instrumentation requirements to achieve physics goals (list)
To achieve the physical goals, it is necessary to

1. Develop noble liquid TPCs for electron-counting (S2-only) analyses
a. Using LAr, LXe, and LNe
b. Explore doped noble liquid TPCs, such as LAr+Xe, and other options

2. Achieve low energy thresholds, targeting scale of target’s ionization energy: O(10 eVee)
3. Decrease backgrounds (see Figure 1)

a. Need approximately <1 events/kg/day with 0.5-keVnr threshold for reactor
neutrinos

b. Need O(103 events/keVnr/ton/year) for 8B solar neutrinos
c. Add some quantitative figure for backgrounds needs for DM

4. Develop high-granularity and single-PE sensitive photosensors to detect S2 light
5. Require stable high voltage and electrodes system
6. Must achieve high liquid purity to maximize electron collection efficiency and minimize

spurious electron backgrounds

Figure 1. (Left) Integrated CEνNS rate above threshold with 6×1012 neutrino/cm2/s (25 m from 3
GWth reactor) [9]. (Right) Neutrino backgrounds in a LXe dark matter experiment, compared with

a 6 GeV/c2 WIMP spectrum [PRD 89, 023524 (2014)]

Significant instrumentation challenges (list)
Instrumentation challenges fall into two categories, regarding lower thresholds and decreasing
backgrounds. These are as follows:

1. Decrease low-energy backgrounds



a. Spurious electron backgrounds (chemical impurities, photo-ionization, charge
build-up)

i. Not well-understood. R&D is needed to characterize SEs and understand
their full phenomenology

ii. Many are likely caused by chemical impurities, which can be reduced with
improved purification, including in situ liquid-phase purification

iii. In LXe, charge build-up also appears to be a significant source. This can
be reduced by Optimizing the electric field to reduce charge accumulation
at liquid surface

b. Electronic recoils (no electronic/nuclear recoil discrimination)
i. Internal β emitters like 3H, 39Ar, 85Kr, 220,222Rn decay chains can be

reduced with improved isotopic purification
ii. γ-emitters in detector components must be reduced with more radiopure

photosensor development
iii. They can also be produced by cosmogenic nuclides, for which we need to

better understand cosmogenic activation rates
2. Lowering thresholds

a. Uncertainties in low-energy electronic and nuclear recoil charge yields require ex
situ calibration

i. It is also important to observations the Migdal effect to support its use in
low-mass DM analyses

b. Electric fields should be optimized for S2-only analyses, requiring ex situ
calibration at variable fields

c. Doping (low-ionization energy dopants for higher charge yields, low-A targets for
higher-energy nuclear recoils) may improve the sensitivity of low-threshold
detectors

i. Need high purity and stability doping techniques, which requires R&D
ii. Ex situ calibration studies with doping are needed to study effects on of

doping on the TPC’s response

Relevant physics areas
1. Low-mass dark matter with 1 MeV–10 GeV masses through recoil channels

a. Dark matter with nuclear and electronic couplings
2. Light dark matter with 10 eV–1 keV masses through absorption channels

a. Axion-like particles and hidden photons
3. Measurements of CEνNS from artificial neutrino sources (Reactors)

a. Sterile neutrino searches with short baselines
b. Non-standard neutrino interactions and new boson mediators
c. Neutrino magnetic moment
d. Neutron distribution in nucleus (input to nuclear equations of state)
e. Weak mixing angle

4. Measurements of CEνNS from natural neutrino sources
a. Supernova neutrinos



b. Solar neutrino measurements (mostly 8B neutrinos)

Relevant cross-connections
1. CF01 WP2: “The landscape of low threshold detection in the next decade”
2. CF01 WP3: “Calibrations and Backgrounds for Direct Detection”
3. NF white paper on CEνNS measurements


